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Abstract. Bose–Einstein condensate (BEC) exhibits a variety of fascinating and unexpected macroscopic
phenomena, and has attracted sustained attention in recent years—particularly in the field of solitons and
associated nonlinear phenomena. Meanwhile, optical lattices have emerged as a versatile toolbox for
understanding the properties and controlling the dynamics of BEC, among which the realization of bright
gap solitons is an iconic result. However, the dark gap solitons are still experimentally unproven, and their
properties in more than one dimension remain unknown. In light of this, we describe, numerically and
theoretically, the formation and stability properties of gap-type dark localized modes in the context of
ultracold atoms trapped in optical lattices. Two kinds of stable dark localized modes—gap solitons and
soliton clusters—are predicted in both the one- and two-dimensional geometries. The vortical counterparts
of both modes are also constructed in two dimensions. A unique feature is the existence of a nonlinear
Bloch-wave background on which all above gap modes are situated. By employing linear-stability analysis
and direct simulations, stability regions of the predicted modes are obtained. Our results offer the
possibility of observing dark gap localized structures with cutting-edge techniques in ultracold atoms
experiments and beyond, including in optics with photonic crystals and lattices.
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1 Introduction
Bose–Einstein condensate (BEC) consists of interacting and
ideal dilute Bose gases cooled down to a very low temperature
(i.e., around absolute zero) and is one of the most famous ex-
amples of the macroscopic quantum phenomena that have at-
tracted increasing interest in past decades. Because of being
equipped with intrinsic nonlinear effect arising from atom–atom
collisions, the BEC (and more broadly, ultracold atoms) is an
innately nonlinear medium in which there are many emergent
nonlinear phenomena, such as matter–wave four-wave mixing,
bright and dark solitons, vortices and vortex lattices, and dy-
namic instabilities.1 In addition to basic research interests, BEC
also provides useful applications in cold atom interferometry,
atom lasers, and optical atomic clocks, with unprecedented pre-
cision and stability, and, more excitingly, quantum information

processing.1–7 Recently, the study of BEC has maintained a
good momentum of development and expansion, attracting in-
creasing attention in various fields, which has manifested its
emergence in solid-state matter and its BEC-like phenomenon
caused by elementary excitations in solids (bosonic quasipar-
ticles) in conditions of thermodynamic equilibrium;8,9 the latter
can also occur under nonequilibrium conditions, and thus
has been dubbed nonequilibrium Bose–Einstein-like conden-
sation.8,9

The coherent interaction between diffraction and nonlinearity
can reach a balance so as to form solitons. The bright solitons
and dark ones are acknowledged to exist in self-focusing and
self-defocusing nonlinearity, respectively, with negative and
positive atom scattering factors (which determine the strength of
nonlinearity) in BEC.1–3 They are exact analytical solutions of
the underlying one-dimensional (1-D) physical model. Note that
within the mean-field theory, the dynamics of BEC are usually
described by a single-particle Schrödinger-like equation—the*Address all correspondence to Jianhua Zeng, E-mail: zengjh@opt.ac.cn
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proverbial Gross–Pitaevskii (nonlinear Schrödinger) equation.
As fundamental excitations of the nonlinear dynamical equa-
tion, dark solitons, which feature a localized dip on the conden-
sate density background and are accompanied by a phase jump
in the localized center (where the density is zero), can be
dynamically stable.1 Both bright solitons10–13 and dark ones14–24

have been created experimentally in atomic condensates with
properly chosen elements of atoms. In particular, dark solitons
in cigar-shaped BECs of 87Rb25 and 23Na26 have been created in
the first two experiments25,26 using the magnetic trap to bind the
repulsive condensates (the condensates with repulsive interatomic
interaction) onto which a steep spatial phase distribution (atomic
density gradient) was written by the phase-imprinting technique.

Advances in laser technology have enabled the generation of
optical lattices formed by coherent interference of two counter-
propagating laser beams, which affords significant opportunities
for studying lots of fascinating physical phenomena in atomic,
molecular, optical, and quantum physics, and particularly for
simulating idealized quantum many-body systems (and prob-
lems) that are very relevant to the condensed-matter physics
community.2–7 Ultracold atoms placed in optical lattices provide
a clear, easy-to-implement, and precisely controlled test bed,
which is advantageous over the crystalline lattices in solid-state
physics, to study diverse interesting physical properties and rich
nonlinear dynamics.3,6,7 One of the most noteworthy effects is
the manipulation to continuous quantum phase transition from
a superfluid to the Mott insulator phase (and vice versa) caused
by simply varying the depth of the periodic potential.27,28 The
observation of this effect initiated the studies of strong-correla-
tion physics with ultracold atomic gases as an interacting many-
body system.4,5 Particularly exciting is the possibility of inves-
tigating a type of bright atomic solitons—matter–wave gap sol-
itons—which exist inside the finite spectral gaps of the
underlying linear Bloch-wave spectrum.2,3,29 Contrary to the
above-mentioned traditional thinking, such a localized state
can exist under repulsive atomic interactions (defocusing non-
linearity) and be balanced with negative effective dispersion in-
duced by the band edge effect of the optical lattices.30

So far, much attention has been focused on the studies of
bright solitons, but their dark counterparts31 do not get the same
spotlight (e.g., see Refs. 32–35 and references therein). In par-
ticular, the nonlinear dynamical mechanism and properties of
dark gap solitons36–38 and vortical ones39 supported by optical
lattices are not well understood. Furthermore, in two-dimen-
sional (2-D) geometry, as far as we know, the existing possibility
of dark matter–wave gap solitons (and vortices) and their veiled
properties are yet to be disclosed. It is therefore the motivation
of this work to survey them systematically on a theoretical level.
We show that placing the BEC into optical lattices can result in
the generation of two kinds of dark localized modes—gap sol-
itons and soliton clusters—in both 1-D and 2-D geometric spa-
tial coordinates. It should be pointed out that the dark gap
soliton clusters associated with the ground-state nonlinear Bloch
waves, which are also a typical feature of all the other gap-type
dark modes, are a new kind of localized mode, expanding and
perfecting the soliton family—with an emphasis on bright gap
waves that were predicted and observed recently in similar
physical scenarios with periodic potentials.

Theoretical descriptions, combined with rigorous mathe-
matical solutions of the Gross–Pitaevskii equation repulsive
interatomic interaction (self-defocusing Kerr nonlinearity),
prove that the so-found dark gap localized modes, supported

by a perfect optical lattice, can be dynamically stable extending
to the second bandgap (BG) (of the corresponding linear
spectrum) in quasi-1-D coordinate. In 2-D cases, however, the
situation becomes more complicated, since the gap-type dark
structures cannot exist in any perfect optical lattice. To this end,
we adopted the defect engineering commonly used in semicon-
ductor technology to introduce single or multiple defects,40–44

thus forming defective optical structures, inside of which the
2-D dark gap structures as defect modes may be stationed.
We show that only this way can we generate stable dark modes.
In addition to the dark gap solitons and soliton clusters, their
vortical counterparts—dark gap vortices and vortex clusters—
both rest on induced bright defects, and can be stable solutions
with topological charges m ¼ 1 and m ≤ 2, respectively.
Stability regions of all the predicted solutions (both 1-D and
2-D) are corroborated in their respective parameter spaces
relying on linear-stability analysis and direct simulations.

This paper is organized as follows: in Sec. 2, we introduce
the theoretical model and give its numerical methods, such as
Newton’s iteration for searching stationary solutions, and
stability testing methods based on the linear-stability analysis
and direct numerical simulation; in Sec. 3, we report the numeri-
cal results for both 1-D and 2-D gap-type dark localized modes,
respectively; in Secs. 3.1 and 3.2, including dark gap solitons
and soliton clusters for both dimensions and the vortical coun-
terparts for 2-D cases, we describe physical explanations of
nonlinear localizations and the self-trapping effect of the coher-
ent matter–wave dark modes; finally, a summary and sugges-
tions for potential future research directions are given in
Sec. 4.

2 Model and Numerical Method
The physical model that describes the dynamical evolution of
matter waves of a BEC trapped in optical lattices can be de-
scribed in the framework of the Gross-Pitaevskii equation,1–3

with the wave function U:

iℏ
∂U
∂τ ¼ − ℏ2

2m
∇2U þ dVOLðrÞU þ 4πℏ2as

m
jUj2U; (1)

where ℏ is Planck’s constant, m is the mass of the atom, τ de-
notes the evolutional time, dVOL is the linear trapping potential
(an optical periodic potential representing an optical lattice
whose structure may be controlled in experiments using the
counter-propagating laser beams), Laplacian ∇2 ¼ ∂2

X and
∇2 ¼ ∂2

X þ ∂2
Y for the atomic BEC media of dimension D ¼ 1

and 2, respectively, and the parameter as corresponds to the
s-wave scattering length that characterizes the coupling strength
of two-body interaction. For convenience of discussion, Eq. (1)
is usually scaled in a dimensionless form:

i
∂ψ
∂t ¼ − 1

2
∇2ψ þ VOLðrÞψ þ gjψ j2ψ . (2)

The normalization was made by introducing the changes
of variables t ¼ τ∕τ0; x∕y ¼ 2X∕Y;ψ ¼ U∕ ffiffiffiffiffiffiffiffiffi

πas0
p

, VOL ¼
m∕ð4ℏ2ÞdVOL, and by choosing τ0 ¼ m∕4ℏ, and as ¼ jas0jg,
with jas0j being the module of the s-wave scattering length
and g being the dimensionless nonlinear strength. Here,
g > 0 corresponds to the strength of defocusing Kerr (or cubic)
nonlinearity arising from repulsive interatomic interactions.
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Note that this equation also applies to nonlinear optics, with ψ
and t being replaced by the field amplitude E and propagation
distance z, respectively. For the BEC of interest to us, its number
of ultracold atoms N (norm) is defined as N ¼ RR jψ j2dxdy.

At certain real chemical potential μ (in optics, μ is replaced
by propagation constant −b), the stationary solutions of Eq. (2)
can be written as ψ ¼ φexpð−iμtÞ, with stationary wave func-
tion φ obeying:

μϕ ¼ − 1

2
∇2ϕþ VOLϕþ gjϕj2ϕ. (3)

In a 1-D case, we consider a typically used optical lattice (VOL),
which is expressed as

VOL ¼ V0 sin
2ðxÞ; (4)

where V0 is a constant parameter. In the 2-D case, the
expression is

VOL ¼ V0½sin2ðxÞ þ sin2ðyÞ�½1þ Vdðx; yÞ�; (5)

where Vd denotes bright defects of the 2-D optical lattice, as
shown in Sec. 3.2. For a 2-D scenario, instead of using the
homogeneous optical lattice as mentioned above, since it cannot
support stable dark localized modes at all, we take the optical
lattice with bright defects, as will be detailed below, which re-
sults in the stable gap-type dark modes supported by the intro-
duced defects.

The linear stability analysis of the gap-type dark localized
modes is a key issue to determine the dynamics and stability
properties of the found localized solutions. In order to do this, we
set the perturbed wave function as ψ ¼ ½ϕðrÞ þ pðrÞ expðλtÞþ
q�ðrÞ expðλ�tÞ� expð−iμtÞ, where ϕðrÞ is the nondisturbed wave
function found from Eq. (2), with pðrÞ and q�ðrÞ being small
perturbed eigenmodes with eigenvalue λ. Substituting such
expression into Eq. (1) results in the following eigenvalue
problems:

�
iλp ¼ − 1

2
∇2pþ ðVOL − μÞpþ gϕð2ϕ�pþ ϕqÞ;

iλq ¼ þ 1
2
∇2qþ ðμ − VOLÞq − gϕ�ð2ϕqþ ϕ�pÞ: (6)

According to the above eigenvalue equations, the perturbed
dark soliton solutions are stable as long as the real part of all
the relevant eigenvalues (λ) is null, that is, ReðλÞ ¼ 0.

In Sec. 3, we focus our interest on presenting numerical
results of the various gap-type dark localized solutions such
as 1-D and 2-D fundamental dark gap solitons and soliton clus-
ters, as well as the ones carrying vortex charge in dimension
D ¼ 2. First, their stationary solutions were obtained by solving
Eq. (2) via Newton’s method, and then their stability was exam-
ined using the linear-stability analysis and reviewed by direct
numerical simulations of the perturbed solutions via Eq. (1).
The numerical experiments of the latter two were done based
on the widely used finite-difference method.

3 Numerical Results

3.1 One-dimensional Matter–Wave Dark Gap Localized
Structures

To corroborate our theoretical predictions of the above-
mentioned matter–wave dark gap localized modes, we show
here the relevant numerical results. The 1-D physical setting
with the optical potential expression [Eq. (4)] is first considered.
To do so, one should portray the relevant band structure of the
underlying linear equation (by setting g ¼ 0), which has been
done and readers can refer to the Supplementary Material,
where optical lattices with shallow, moderate, and strong mod-
ulations are included, by varying the strength V0. For the sake
of discussion, we set V0 ¼ 3 for all the 1-D results, and the non-
linear strength g ¼ 1.5 is taken throughout the paper.

Depicted in Fig. 1(a) is the relation between norm N and
chemical potential μ for 1-D dark gap solitons supported by
the moderately modulated optical lattice, from which we can
see the N has a linear increasing relation with μ, when going
deeper inside the higher BGs. It is obvious that the slope of
NðμÞ in the second BG is slightly larger than its counterpart
in the first BG. Meanwhile, it is seen that—similar to their bright
counterparts, bright gap solitons—the gap-type dark modes
also obey the empirical “anti-Vakhitov–Kolokolov” (anti-VK)
stability criterion,46–48 that is, dN∕dμ > 0. Employing the linear-
stability analysis based on eigenvalue equations [Eq. (6)], we
can obtain the dependence of the maximal real part of eigen-
values ReðλÞ on μ of such gap-type dark localized modes,
as shown in Fig. 1(b), from which we observe that such dark
localized modes are robustly stable. Exceptionally unstable ones
exist only when they are approaching the band edge, resembling
those obtained for their bright counterparts.49 Remarkably, we
also find from Fig. 1(b) that the dark gap solitons are more stable
in the higher BG (actually, they are almost completely stable in
the second BG), contrary to those obtained before (Ref. 49) for
bright ones, where the stability region in the second gap shrinks
quickly. This fact is consolidated too by the corresponding
dynamical evolution of such dark gap modes in real time by
solving the physical model Eq. (1); see the examples in the
Supplementary Material.

With further insight into typical shapes of such dark gap sol-
utions thus found, as depicted in Figs. 1(c)–1(e), we find that
the central dip of these dark solitons gets narrower with an in-
crease of μ, and interestingly, the central dip shrinks more rap-
idly when they are prepared in the second BG, since inside they
experience a much stronger localization induced by the Bragg
scattering therein. It is observed from Fig. 1(e) that such a cen-
tral dip localized at the minimum of the axial optical periodic
potential (and thus, the dark gap solitons) may be viewed as
a fundamental ground state of the physical system. Furthermore,
a unique feature is that the dark gap solitons are always accom-
panied with a bilateral periodic wave background, which are
actually the nonlinear Bloch waves—the nonlinear counter-
parts of the well-known linear Bloch-wave solutions—of the
underlying Eq. (1) for periodic solutions; such dark gap
modes thus may be viewed as Bloch-wave modulated dark
gap solitons. In other words, these dark gap solitons are always
situated on the relevant nonlinear Bloch waves. The associated
relation between both types of nonlinear wave solutions is
detailed in the Supplementary Material. It should be noted that
this feature holds for all the dark gap solutions reported here.
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Fig. 1 (a) Number of atoms (N) and (b) maximal real part of eigenvalues versus chemical potential
μ for 1-D matter–wave dark gap solitons found in the model with a 1-D periodic optical potential
(optical lattice). The gray areas in this and other figures are the bands of linear spectra. Profiles
of 1-D dark gap solitons for three marked circles in panel (b): in first BG with (c) μ ¼ 1.23
and (d) μ ¼ 1.8, and in second BG with (e) μ ¼ 3.6. Here and in Fig. 2, we set V 0 ¼ 3, and
we set g ¼ 1.5 throughout the paper. SIG in panel (a) [and in Figs. 2(a) and 4(a)] denotes the semi-
infinite gap. Black dashed line in panel (e) represents the scaled shape of the optical lattice.
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Fig. 2 The same as in Fig. 1 but for families of 1-D matter–wave dark gap soliton clusters (com-
posed of seven individuals), with which the nonlinear Bloch waves are accompanied. In the bottom
panels (c)–(e), the spacing (Δ) between adjacent solitons is Δ¼ 2π, doubling the period of the
optical lattice. The chemical potential μ ¼ 1.2 for panel (c); its values for panels (d) and (e) are
the same as those in Figs. 1(d) and 1(e), respectively.
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Next, we try to construct higher-order nonlinear excitations
of 1-D dark gap solitons, which we call dark gap soliton clus-
ters. In reality, arranged solitons are what constitute these soliton
clusters—hence the name. The curve NðμÞ for the 1-D dark gap
soliton clusters formed by seven individuals (identical
dark solitons) is plotted in Fig. 2(a), where the anti-VK stability
criterion dN∕dμ > 0 remains valid; plotting is also for their
stability and instability region, shown as ReðλÞ versus μ, within
the first two finite BGs in Fig. 2(b). Profiles of such soliton clus-
ters are displayed in the bottom panels [Figs. 2(c)–2(e)], where
the spacing (Δ) between adjacent solitons is defined as Δ ¼ 2π,
which is twice the period of the optical lattice, Δlatt ¼ π. Surely,
the dark gap soliton clusters with different soliton spacing (Δ)
can exist and be stable too, as long as the requirement
Δ ¼ nΔlatt ¼ nπ (with n ≥ 2) is met (our simulations verified
that soliton clusters are always unstable under the condition
Δ ¼ Δlatt ¼ π). We point out that direct simulations of evolution
of localized modes shown in Figs. 2(c)–2(e) are included in
the Supplementary Material.

3.2 Two-dimensional Matter–Wave Dark Gap Localized
Structures

Generating stable high-dimensional dark gap localized struc-
tures is a nontrivial issue, owing to the presence of strong

localization effects in the respective BGs of the underlying lin-
ear spectrum. In fact, things get a little bit complicated because
of the unmodified 2-D optical lattice (perfect shape): simply ex-
tending the 1-D case to a higher domain does not guarantee the
formation of dark gap solitons any more (this conjecture has
also been corroborated numerically). It is therefore still an open
issue to find gap-type dark localized modes higher than one
dimension. To explore a possible way that allows for their
existence and that can be realized with general techniques
already used in current ultracold atom experiments is a major
motivation for this paper.

Can the defected optical potentials (imperfect optical lattices
that may break the spatial symmetry) accomplish this mission?
It might work, considering the fact that defect engineering is
widely used in realizing all-optical integrated circuits from di-
verse optical periodic potentials, such as photonic crystals and
lattices. Based on this method, stable 2-D bright solitons and
vortices, in a BEC trapped in optical lattices, emerging as local-
ized defect modes within the gap spectrum region, have been
reported. Particularly, Zeng and Malomed50 demonstrated that
one or several dark defects (induced as holes) can support vari-
ous bright gap-mode solitons and vortices. This implies that
introducing bright defects (defects with amplitude higher than
the surrounding background) may otherwise aid the creation and
stabilization of dark gap localized modes. This is indeed true,
as shown below.

Fig. 3 Calculated 2-D profiles of the optical periodic potentials (VOL, first row) and their contour
plots (central row) as well as the corresponding linear spectra (bottom row): (a) perfect optical
lattice, optical lattices with (b) single and (c) multiple bright defects (with the number of defects
n ¼ 36). Here and below, V 0 ¼ 2.5 and V 0 ¼ 10 are used, respectively, for optical lattices without
and with defects. Perpendicular dashed lines in the central two panels represent two coordinates
(x and y ), with the intersection corresponding to origin of coordinates, point (0, 0).
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To investigate whether a particular 2-D defect structure
allows for dark soliton formation, the 2-D optical potential
structures for the homogeneous optical lattices with V0 ¼ 2.5,
and the ones with single and multiple defects with V0 ¼ 10, are
separately displayed in Figs. 3(a)–3(c). Their contour plots are
displayed in the center row; their linear spectra, calculated

directly from the linearized model of Eq. (2), are displayed
in the bottom row. It is observed from the bottom row panels that
the second BG gradually constricts with an increase in the num-
ber of defects, and the same thing also happens for the first BG.
We stress that, although the defect potential arranged in Fig. 3(c)
is in the same period of the optical lattice, unequal periods

(a)

0
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N

(b)

1.5 2 2.5 3 3.3
0

1200

N

4.2 4.5

... C2

2nd BG

C1

D1
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...

SIG

Fig. 4 Number of atoms (N) versus chemical potential μ for 2-D matter–wave dark localized
modes: (a) dark gap solitons with 1 defect and (b) dark gap soliton clusters supported by the
2-D periodic optical potential (optical lattice) with 36 defects. The three-dimensional density dis-
tributions, contour plots, and profiles for the marked realizations C1, C2, and D1 are shown in
Figs. 5(a)–5(c), respectively.

Fig. 5 Calculated atom density distributions (first row), their contour plots (central row), and the
profiles (bottom row) of 2-D matter–wave dark gap modes: dark solitons in (a) the first BG with
μ ¼ 3.1 and (b) the second BG with μ ¼ 4.36; (c) dark gap wave (soliton clusters) in the first BG
with μ ¼ 3.1. Dashed lines in the first central panel represent the Cartesian co-ordinate system.
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for both potentials can also be considered; speculatively, its
effect on the research results and conclusions of this paper is
relatively low. It is relevant to mention that, in Figs. 3(a) and
3(b), we have plotted two perpendicular dashed lines in the cen-
tral row panels to illustrate the x and y coordinates under con-
sideration, stressing that their intersection is the coordinate
origin (0, 0); this indicates that the 2-D dark gap solutions re-
ported below also station at the minimum of the optical lattice
[the same feature as their 1-D cases, e.g., Fig. 1(e)], thus the
bright defect is also introduced at the minimum positions of
the lattice.

Our numerical simulations demonstrate that the 2-D dark gap
solitons, built on nonlinear Bloch-waves background and sup-
ported by optical lattices with a single defect that leads to the
formation of a central dip of the dark mode, can be stable modes,
as verified numerically by their relevant dynamical evolution
with time t, as demonstrated in the Supplementary Material.
The dependenceNðμÞ for the 2-D fundamental dark gap solitons
within first and second BGs is shown in Fig. 4(a); the same
curve for dark gap soliton clusters is depicted too in Fig. 4(b).
Note that, once again, the anti-VK stability criterion dN∕dμ > 0
is obeyed. Comparing both panels, we find that the number of
atoms (norm N) decreases with an increase of the number of
dark solitons, contrary to their bright counterparts. This may
be explained by the fact that increasing central dips of dark sol-
itons serves to evaporate some active cooled atoms and thus,

diminishes the atom number. Representative examples of such
dark gap solitons are shown in Figs. 5(a) and 5(b), with the atom
density distributions, contour plots, and profiles. It is seen that
the central dip of the 2-D dark gap solitons pinned in a single
defect narrows, while the amplitude of the solitons increases,
when increasing μ (e.g., going from the first BG to the second
one); this pattern accords with their 1-D counterparts as shown
in Fig. 1. The optical lattice with more defects can support a new
kind of dark gap solitonic structure: dark soliton clusters whose
typical example is shown in Fig. 5(c). Direct numerical simu-
lations further confirm that both types of the 2-D dark localized
modes—gap solitons and their composite, soliton clusters—are
dynamically stable. The physical explanation for this attribute is
that they are the intrinsic fundamental localized defect modes of
the underlying model, Eq. (2).

We next focus on the generation of vortical counterparts of
the thus-found dark gap solutions, nontrivial phase states. In
Fig. 6(a), we give an example of a matter–wave dark gap vortex
carrying vorticity (topological charge) m ¼ 1, which was gen-
erated via phase imprinting with the ground-state nonlinear
Bloch wave as background. Numerically, this is done by simply
adding the term expðimθÞ in the above-predicted soliton struc-
tures of both types. Systematic simulations verified that the dark
gap vortices are dynamically stable at m ¼ 1, while unstable at
m ≥ 2. Stable vortical modes are also for the dark gap soliton
clusters; in particular, they are stable under the conditionm ≤ 2,

Fig. 6 Contour plots of the atom density distribution (top), phases (central), and eigenvalues (bot-
tom) of the 2-D matter–wave dark gap modes with engraved vortex: with vortex charge (a) m ¼ 1
at μ ¼ 4.36, (b) m ¼ 2 at μ ¼ 2.4, and (c) m ¼ 3 at μ ¼ 3.1. Panel (a) represents dark gap vortex;
panels (b) and (c) represent stable and unstable vortex states of dark gap soliton clusters,
respectively.
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while completely unstable at m ≥ 3 [see their stable and unsta-
ble examples in Figs. 6(b) and 6(c), respectively]. The dynamics
of vortical modes of both types [dark gap vortices and soliton
clusters carrying vorticity, over time t by monitoring their
evolutions in real-time model, Eq. (1)] are presented in the
Supplementary Material.

4 Conclusion
It is known that, within the mean-field framework, the creation
of gap-type dark localized modes—including dark gap solitons
and gap vortices, alike, inside the finite BG of the underlying
linear spectrum region caused by placing a BEC on optical lat-
tices in dimensions greater than one—is a challenging issue. To
this end, we devised a way to solve the open problem of creating
2-D gap-type dark localized modes, which is done using defect
engineering methods used popularly in nonlinear optics40–44 (see
also the Supplementary Material)—inducing single or multiple
bright defects to the lattice minimum for optical periodic poten-
tial, which enables the formation of stable 2-D dark gap modes
appearing as localized defect modes. Note that such bright
defects50–53 are able to be readily fabricated in ultracold atom
experiments since, in principle, one can generate the optical
lattices with arbitrary configurations,1–7 and of course include
those lattices with arbitrary defects.

Two kinds of dark gap modes—gap solitons and soliton clus-
ters—as well as vortical counterparts of both kinds, were intro-
duced; the existence, dynamics, and stability properties of these
modes were explored by means of linear-stability analysis and
direct numerical simulations. For the certain physical parame-
ters under consideration, all 2-D fundamental dark structures are
stable in the respective gap spectrum. Specifically, the 2-D dark
gap solitons can be stable localized defect modes pinned in both
the first and second BGs, whereas the dark gap soliton clusters
solely exist in the first BG. As far as vortical modes of dark gap
solitons and soliton clusters are concerned, stable vortical modes
of dark solitons are confined to topological charge (vorticity)
m ¼ 1, whereas such value can be up to m ¼ 2 for the latter
case (vortical counterparts of dark gap soliton clusters). The
study also covered 1-D dark gap solitons and soliton clusters,
although their generation is much different and easier, by simply
using the perfect optical lattice (without defect). We stress that,
to our knowledge, the dark gap soliton clusters (composed of
multiple dark gap solitons) are a new kind of localized wave
that has not been explored before. All the dark gap localized
modes are centered on the lattice minimum and accompanied
by a background that is associated with nonlinear Bloch waves
of the corresponding physical model Eq. (1). Stability regions of
all the predicted localized solutions in one and two dimensions
were given in their relevant parameter spaces. Our theoretical
predictions pave the way toward realizing both gap-type dark
solitons and vortical ones with ordinary techniques popularly
used in current ultracold atom laboratories.1–9

A natural extension of this work is to consider a more com-
plicated case—the coupled nonlinear Schrödinger models,1,54

e.g., two-component BECs imprinted with optical lattices,
and clarify the existence and stability of gap-type dark solitons
therein. Nowadays, the combined linear-nonlinear lattices
models47,48,55 with periodically modulated linear49 and
nonlinear56–58 potentials have been researched and widely used
to stabilize various species of bright solitons, including gap
ones; applying them to the study of dark gap modes should
be obvious and interesting. The inhomogeneous nonlinearity

distributions,59 including periodic ones, may be realized via
the Feshbach resonance technique.60 A remaining challenging
issue waiting to be solved is how to generate 2-D dark gap
modes in homogeneous optical lattices.

We anticipate that the study of dark localized modes struc-
tures of gap type, pinned in the finite BGs of the underlying
linear spectrum in atomic BEC loaded into optical lattices, will
open a new direction to research various other types of excita-
tions, e.g., ring dark solitons61 and vortex composites,61 in the
same and similar physical settings and beyond (such as in fiber
Bragg gratings, layered structures, photonic crystals, and lattices
in nonlinear optics),44,62,63and stimulate the creative enthusiasm
and initiative of scientists to observe the predicted results using
modern state-of-the-art technologies that are simple, mature, and
easily realizable, and lead the development of such a direction.

After submission of this paper, one of the anonymous
reviewers suggested that we survey the existence of 1-D dark
gap solitons (and the cluster ones) in the 1-D optical lattices with
one or several defects. We have checked this angle in detail and
found that such dark gap solitons indeed can be stable localized
modes; their existence can be explained by the same physical
mechanism as the 2-D cases presented in Fig. 5. An unique
property of the 1-D dark gap solitons in between the 1-D perfect
optical lattice and imperfect ones with one or few defects is that
the dark gap modes supported by the former are on-site modes,
whereas the off-site modes are for the latter forms of lattices,
with the dips (of the dark modes) resting on the lattice minimum
and maximum, respectively.
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